Dynamic Memory Allocation and Linked Lists |401

Item 1 . Item 2 . item 3 —t

Y

i X Item to be inserted

; ltem 1 I—— tem2 | o tem3 | e—f—»

X l

(a) Insertion

(A record is created holding the new item and its next pointer is set to link it to the
item, which is to follow it in the list. The next pointer of the item which is to precede it
must be modified to point to the new item.)

ltem 1 . ltem 2 —t+— Jtem3 o1
Item to be deleted
Item1 . Item 2 —t— Item 3 —t—>

(b) Deletion

(The next pointer of the item immediately preceding the one to be deleted is altered
and made to point to the item following the deleted item.)

Fig. 13.5 Insertion into and deletion from a linked list

13.9 TYPES OF LINKED LISTS

There are different types of lined lists. The one we discussed so far is known as linear singly linked
list. The other linked lists are:

o Circular linked lists

¢ Two-way or doubly linked lists

e Circular doubly linked lists

The circular linked lists have no beginning and no end. The last item points back to the first item.

The doubly linked list uses double set of pointers, one pointing to the next item and other pointing to
the preceding item. This allows us to traverse the list in either direction. Circular doubly linked lists
employs both the forward pointer and backward pointer in circular form. Figure 13.6 illustrates vari-
ous kinds of linked lists.

402 l Programming in ANSI C

(a) Linear list

—
¢w~f-~—>l B [C —t——
|

(b) Circular list

I) S SN e N U S—
0 A ' !
|

(c) Two-way linked list

‘\
L : - — —

s, | —0 1 1 o
| - [

(d) Two-way circular list

Fig. 13.6 Different types of linked lists

13.10 POINTERS REVISITED

The concept of pointers was discussed in Chapter 1 1. Since pointers are used extensively in process-
ing of the linked lists, we shall briefly review some of their properties that are directly relevant to the
processing of lists.

We know that variables can be declared as pointers, specifying the type of data item they can point
to. In effect, the pointer will hold the address of the data item and can be used to access its value. In
processing linked lists, we mostly use pointers of type structures.

It is most important to remember the distinction between the pointer variable ptr, which contain
the address of a variable, and the referenced variable *ptr, which denotes the value of variable to
which ptr’s value points. The following examples illustrate this distinction. In these illustrations, we
assume that the pointers p and q and the variables x and y are declared to be of same type.

(a) Initialization

p = &; | . > 100
p points to X
q = &y; . 200

q points to y

Dynamic Memory Allocation and Linked Lists |403

The pointer p contains the address of x and q contains the address ofy.
*p =100 and *q = 200 and p<>q

(b) Assignment p = q
The assignment p = q assigns the address of the variable y to the pointer variable p and therefore p
now points to the variable y.

P=ai| ot 100
I B b]
p \\: X
!,,V_,..._,,,_W_ \ I
! e 200
L]
q y

Both the pointer variables point to the same variable.
*p=*q=200butx <>y

(c) Assignment *p = *q
This assignment statement puts the value of the variable pointed to by q in the location of the variable
pointed to by p.

—— ey

PR el gy

v___a,-.._ points to - me
I o
: e 200
— [—

q points to y

The pointer p still points to the same variable x but the old value of x is replaced by 200 (which is
pointed to by q).

x=y=200butp <>gq
(d) NULL pointers
A special constant known as NULL pointer (0) is available in C to initialize pointers that point to
nothing. That is the statements

p=0;(orp=NULL)) p— @

q=0;(q=NULL;) q—«)@
make the pointers p and q point to nothing. They can be later used to point any values.
We know that a pointer must be initialized by assigning a memory -address before using it. There
are two ways of assigning memory address to a pointer.
1. Assigning an existing variable address (static assignment)

ptr = 8count;

404 | Programming in ANSI C

2. Using a memory allocation function (dynamic assignment)
ptr = (int*) malloc(sizeof(int));

13.11 CREATING A LINKED LIST

We can treat a linked list as an abstract data type and perform the following basic operations:
1. Creating a list
Traversing the list
Counting the items in the list
Printing the list (or sub list)
Looking up an item for editing or printing
Inserting an item
Deleting an item
8. Concatenating two lists
In Section 13.7 we created a two-element linked list using the structure variable names node1 and
node2. We also used the address operator & and member operators . and —> for creating and access-
ing individual items. The very idea of using a linked list is to avoid any reference to specific number
of items in the list so that we can insert or delete items as and when necessary. This can be achieved
by using “anonymous” locations to store nodes. Such locations are accessed not by name, but by
means of pointers, which refer to them. (For example, we must avoid using references like nodel.age
and nodel.next —> age.)
Anonymous locations are created using pointers and dynamic memory allocation functions such as
malloc. We use a pointer head to create and access anonymous nodes. Consider the following:

~N Nk W

struct linked list
{
int number;
struct Tinked_list *next;
b
typedef struct linked_list node;
node *head;
head = (node *) malloc(sizeof(node));

The struct declaration merely describes the format of the nodes and does not allocate storage.
Storage space for a node is created only when the function malloc is called in the statement
head = (node *) malloc(sizeof(node));

This statement obtains a piece of memory that is sufficient to store a node and assigns its address
to the pointer variable head. This pointer indicates the beginning of the linked list.

head node
‘ o . M]

number next

Dynamic Memory Allocation and Linked Lists | 405

The following statements store values in the member fields:

head —> number = 10;
head —> next = NULL;

head node

. 10 0

—J

number nextA
The second node can be added as follows:

head —> next = (node *)malloc(sizeof(node));
head —> next —>number = 20;
head-—>next—>next = NULL;

Although this process can be continued to create any number of nodes, it becomes cumbersome
and clumsy if nodes are more than two. The above process may be easily implemented using both
recursion and iteration techniques. The pointer can be moved from the current node to the next node
by a self-replacement statement such as

head = head —> next;

The Example 13.3 shows creation of a complete linked list and printing of its contents using
recursion.

Example 13.3| Write a program to create a linear linked list interactively and print out
the list and the total number of items in the list.

The program shown in Fig. 13.7 first allocates a block of memory dynamically for the first node
using the statement

head = (node *)malloc(sizeof(node));

which returns a pointer to a structure of type node that has been type defined earlier. The linked list
is then created by the function create. The function requests for the number to be placed in the
current node that has been created. If the value assigned to the current node is —999, then null is
assigned to the pointer variable next and the list ends. Otherwise, memory space is allocated to the
next node using again the malloc function and the next value is placed into it. Not that the function
create calls itself recursively and the process will continue until we enter the number —-999.

The items stored in the linked list are printed using the function print which accept a pointer to the
current node as an argument. It is a recursive function and stops when it receives a NULL pointer.
Printing algorithm is as follows;

1. Start with the first node.

2. While there are valid nodes left to print
(a) print the current item and
(b) advance to next node

Similarly, the function count counts the number of items in the list recursively and return the total
number of items to the main function. Note that the counting does not include the item ~999 (con-
tained in the dummy node).

406 | Programming in ANSI C
Program

#include <stdio.h>
#inciude <stdlib.h>
#define NULL O

struct Tinked_list
{
int number;
struct Tinked_list *next;
bs
typedef struct linked list node; /* node type defined */

main()
{
node *head;
void create(node *p);
int count(node *p);
void print(node *p);
head = (node *)malloc(sizeof(node));
create(head);
printf("\n");
printf(head);
printf("\n");
printf("\nNumber of items = %d \n", count(head));
}

void create(node *1ist)
{

printf("Input a number\n");
printf("(type -999 at end): ");
scanf("%d", &list —> number); /* create current node */

if(list—>number == -999)

{
1ist—>next = NULL;
}
else /*create next node */
{

1ist—>next = (node *)malloc(sizeof(node));
create(list—>next); */ Recursion occurs */

}

return;

}
void print(node *1ist)

{

if(1ist—>next != NULL)

Dynamic Memory Allocation and Linked Lists

{

if(list->next->next == NULL)
printf("%d", list—>next—>number);

}

return;

}

int count(node *1ist)
{
if(list->next == NULL)
return (0);
else
return(l+ count(list—>next));

OQutput

Input a number

(type -999 to end); 60
Input a number

(type -999 to end); 20
Input a number

(type -999 to end); 10
Input a number

(type —-999 to end); 40
Input a number

(type -999 to end); 30
Input a number

(type -999 to end); 50
Input a number

(type -999 to end); -999

60 ~—>20 ——>10 —~>40 ——>30 ——>50 ——> —999

Number of items = 6

printf("%d——>",1ist —>number); /* print current item */

print(list->next); /* move to next item */

407

Fig. 13.7 Creating a linear linked list

COEDERSEBRTANNS AN TTEAL

One of the advantages of linked lists is the comparative case with which new nodes can be inserted.
It requires merely resetting of two pointers (rather than having to move around a list of data as would

be the case with arrays).

408] Programming in ANSIC

Inserting a new item, say X, into the list has three situations:
1. Insertion at the front of the list.
2. Insertion in the middle of the list.
3. Insertion at the end of the list.
The process of insertion precedes a search for the place of insertion. The search involves in locat-
ing a node after which the new item is to be inserted.
A general algorithm for insertion is as follows:

Begin
if the list is empty or
the new node comes before the head node then,
insert the new node as the head node,
else
if the new node comes after the last node, then,
insert the new node as the end node,
else
insert the new node in the body of the list.
Fnd

Algorithm for placing the new item at the beginning of a linked list:

1. Obtain space for new node.

2. Assign data to the item field of new node.

3. Set the next field of the new node to point to the start of the list.

4. Change the head pointer to point to the new node.
Algorithm for inserting the new node X between two existing nodes, say. N1 and N2;

1. Set space for new node X.

2. Assign value to the item field of X.

3. Set the next field of X to point to node N2.

4. Set the next field of N1 to point to X.

Algorithm for inserting an item at the end of the list is similar to the one for inserting in the middle,

except the next field of the new node is set to NULL (or set to point to a dummy or sentinel node, if it
exists).

[Example 13.4| Write a function to insert a given item before a specified node known
as key node.

The function insert shown in Fig. 13.8 requests for the item to be inserted as well as the “key
node”. If the insertion happens to be at the beginning, then memory space is created for the new node,
the value of new item is assigned to it and the pointer head is assigned to the next member. The
pointer new which indicates the beginning of the new node is assigned to head. Note the following
statements:

new—>number = x;
new—>next = head;
head = new;

Dynamic Memory Allocation and Linked Lists |409

node *insert(node *head)

{

node *find(node *p, int a);

node *new; /* pointer to new node */

node *nl; /* pointer to node preceding key node */
int key;

int x; /* new item (number) to be inserted */

printf("Value of new item?");

scanf("%d", &x);

printf("Value of key item ? (type -999 if last) ");
scanf("%d", &key);

if(head—>number == key) /* new node is first */
{
new = (node *)malloc(size of(node));
new—>number = x;
new—>next = head;
head = new;

}
else /* find key node and insert new node */
{ /* before the key node */

nl = find(head, key); /* find key node */

if(nl == NULL)
printf("\n key is not found \n");
else /* insert new node */
{
new = (node *)malloc(sizeof{node));
new—>number = x;
new—>next = nl->next;
nl->next = new;
}
}
return(head);
}
node *find(node *1ists, int key)
{
if(1ist—>next—>number == key) /* key found */
return{list);
else

if(1ist->next—>next == NULL) /* end */
return(NULL);
else
find(list—>next, key);

Fig. 13.8 A function for inserting an item into a linked list

410| Programming in ANSI C

However, if the new item is to be inserted after an existing node, then we use the function find
recursively to locate the *key node’. The new item is inserted before the key node using the algorithm
discussed above. This is illustrated as:

Before insertion
new = (node *)malloc(sizeof(node));
new—>number = x;

_ keynode
- | e i |
T S s N
e i R B
i
|
. n1 ¢ nt - >next
N
—_— x i
new | . l
,,,,,,,,,,, RSSS S R —
new node
After insertion
new—>next = nl->next;
nl->next = new;
key node
T |
| ' o M
e LT
| |
| 3
| o
n1 [
¢ i1 n1—>next

new node

13.13 DELETING AN TTEM

Deleting a node from the list is even easier than insertion, as only one pointer value needs to be
changed. Here again we have three situations.

1. Deleting the first item

2. Deleting the last item

3. Deleting between two nodes in the middle of the list

In the first case, the head pointer is altered to point to the second item in the list. In the other two

cases, the pointer of the item immediately preceding the one to be deleted is altered to point to the
item following the deleted item. The general algorithm for deletion is as follows:

Dynamic Memory Allocation and Linked Lists |411

Begin
if the list is empty, then,
node cannot be deleted
else
if node to be deleted is the first node, then,
make the head to point to the second node,
else
delete the node from the body of the list.
End

The memory space of deleted node may be released for re-use. As in the case of insertion, the
process of deletion also involves search for the item to be deleted.

[Eomple I3.§J Write a function to delete a specified node.

A tunction to delete a specified node is given in Fig. 13.9. The function first checks whether the
specified item belongs to the first node. If yes, then the pointer to the second node is temporarily
assigned the pointer variable p, the memory space occupied by the first node is freed and the location
of the second node 1s assigned to head. Thus, the previous second node becomes the First node of the
new list.

If the item to be deleted is not the first one, then we use the find function to locate the position of
‘key node’ containing the item to be deleted. The pointers are interchanged with the help of a tempo-
rary pointer variable making the pointer in the preceding node to point to the node following the key
node. The memory space of key node that has been deleted if freed. The figure below shows the
relative position of the key node.

key node
- _ e
| PO | | et ® -t
i
; 3 3
; : ;
Pont i n1— >next In1 = >next — >next
¢ ¢ ¢

The execution of the following code deletes the key node.
p = nl->next—>next;
free (nl->next);
nl->next = p;

n1-—>next

key node

412 Programming in ANSIC

node *delete(node *head)
{
node *find(node *p, int a);
int key; /* item to be deleted */
node *nl; /* pointer to node preceding key node */
node *p; /* temporary pointer */
printf("\n What is the item (number) to be deleted?");
scanf("%d", &key);
if(head—>number == key)/* first node to be deleted) */

{
p = head->next; /* pointer to 2nd node in list */
free(head); /* release space of key node */
head = p; /* make head to point to 1st node */

}

else

{

nl = find(head, key);
if(nl == NULL)
printf("\n key not found \n");
else /* delete key node */
{
p = nl->next->next; /* pointer to the node
following the keynode */

free(nl->next); /* free key node */
nl->next = p; /* establish link */
}
}

return{head);

/* USE FUNCTION find() HERE */

Fig. 13.9 A function for deleting an item from linked list

13.14 APPLICATION OF LINKED LISTS

Linked list concepts are useful to model many different abstract data types such as queues, stacks and
trees.

If we restrict the process of insertion to one end of the list and deletions to the other end, then we
have a model of aqueue. That is, we can insert an item at the rear and remove an item at the front (see
Fig. 13.10a). This obeys the discipline of “first in, first out” (FIFO). There are many examples of
queues in real-life applications.

If we restrict insertions and deletions to occur only at one end of .1st, the beginning, then we model
another data structure known as stack. Stacks are also referred to as push-down lists. An example of
a stack is the “in” tray of a busy executive. The files pile up in the tray, and whenever the executive

Dynamic Memory Allocation and Linked Lists |413

has time to clear the files, he takes it oft from the top. That is, files are added at the top and removed
from the top (see Fig. 13.10b). Stacks are sometimes referred to as “last in, first out” (LIFQ) struc-

ture.

Lists, queues and stacks are all inherently one-dimensional. A free represents a two-dimensional
linked list. Trees are frequently encountered in everyday life. One example is the organizational chart
of a large company. Another example is the chart of sports tournaments.

..............

I ouT

IN | { i
s Car5 | | Card ; . Car3 | car2 | Car1
I © s o o s o am——) o

Rear Front
(a) Queue (Repair shop)
/
IN ouT
\\ / /
2N / ;
File 4 /
\ . /
; File 3
\ /
File 2 /
. S
\ File 1 /

(b) Stack {Executive tray)
Fig. 13.10 Application of linked lists

Just Remember

B BN BB

AR B

N

Use the sizeof operator to determine the size of a linked list.

When using memory allocation functions mallec and calloc, test for a NULL
pointer return value. Print appropriate message if the memory allocation fails.
Never call memory allocation functions with a zero size.

Release the dynamically allocated memory when it is no longer required to avoid
any possible “memory leak™.

Using free function to release the memory not allocated dynamically with malloc
or calloc is an error.

Use of a invalid pointer with free may cause problems and, sometimes, system
crash.

Using a pointer after its memory has been released is an error.

It is an error to assign the return value from malloc or calloc to anything other
than a pointer.

It is a logic error to set a pointer to NULL before the node has been released. The
node is irretrievably lost.

414 Programming in ANSIC

#v Ttis an error to declare a self-referential structure without a structure tag.
5 1tis an error to release individually the elements of an array created with calloc.
&5 1tis a logic error to fail to set the link filed in the last node to null.

CASE STUDIES
1. Insertion in a Sorted List

The task of inserting a value into the current location in a sorted linked list involves two operations:
1. Finding the node before which the new node has to be inserted. We call this node as ‘Key
node”.
2. Creating a new node with the value to be inserted and inserting the new node by manipulating
pointers appropriately.
In order to illustrate the process of insertion, we use a sorted linked list created by the create
function discussed in Example 13.3. Figure 13.11 shows a complete program that creates a list (using
sorted input data) and then inserts a given value into the correct place using function insert.

Program

#include <stdio.h>
#include <stdio.h>
#define NULL O

struct Tinked 1ist
{
int number;
struct linked-list *next;
bs
typedef struct linked 1it node;

main()
{
int n;
node *head;
void create(node *p);
node *insert(node *p, int n);
void print(node *p);
head = (node *)malloc(sizeof(node));
create(head);
printf("\n");
printf("Original list: ");
print (head);
printf("\n\n");
printf("Input number to be inserted: ");
scanf("%d", &n);

Dynamic Memory Allocation and Linked Lists |415

head = inert{head,n);
printf(“\n");
printf("New list: “);
print(head);

}

void create(node *Tist)

{
printf("Input a number \n"});
printf("(type -999 at end): ");
scanf("%d", &list—>number);

if(1ist—>number == -999)
{

Tist—>next = NULL;
}

else /* create next node */

{
list->next = (node *)malloc(sizeof(node));
create(list—>next);

}

return:

}

void print(node *1ist)

{
if(list—>next != NULL)
{

printf("sd ——>", list—>number);

if(list —>next->next = = NULL)
printf("%d", list->next—>number);

print(list->next);
}

return:

}

node *insert(node *head, int x)
{
node *pl, *p2, *p;
pl = NULL;
pZ = head; /* p2 points to first node */

for(; p2->number < x; p2 = p2->next)

{

416 | Programming in ANSI C

pl = p2Z;

if(p2->next—>next == NULL)
{

p2 = p2->next; /* insertion at end */
break;

}
/*key node found and insert new node */
p = (node)malloc(sizeof(node)); / space for new node */
p—>number = x; /* place value in the new node */
p—>next = p2; /*1ink new node to key node */
if (pl == NULL)
head = p; /* new node becomes the first node */
else

pl->next = p; /* new node inserted in middle */

return (head);

}
Output
Input a number

(type -999 at end); 10

Input a number
{type -999 at end); 20

Input a number
(type -999 at end); 30

Input a number
(type —999 at end); 40

Input a number
(type —999 at end); -999

Original list: 10 -—>20-->30-—>40-—>-999

Input number to be inserted: 25
New list: 10-—>20-—>25-->30-—>40-->-999

Fig. 13.11 Inserting a number in a sorted linked list

Dynamic Memory Allocation and Linked Lists |417

The function takes two arguments, one the value to be inserted and the other a pointer to the linked
list. The function uses two pointers, p1 and p2 to search the list. Both the pointers are moved down
the list with p1 trailing p2 by one node while the value p2 points to is compared with the value to be
inserted. The ‘key node’ is found when the number p2 points to is greater (or equal) to the number to
be inserted.

Once the key node is found, a new node containing the number is created and inserted between the
nodes pointed to by p1 and p2. The figures below illustrate the entire process.

key node
head
o—— 10 |— 20 > 30 | 40
) L
| P1 p2
. e x = 25 (value to be inserted)
At the start of the search
key node
head
S 10 20 30 40
p1 p2
> L]
When key node is found
key node
head 7]
. 10 20 30 — fﬁ 40 —
[I—
p1 p2
. :
pe—— 25 | new node
When new node is created
key node
head |
—— 10 20 r>1 30 40

p1

L)

|
I
|
;

up

o
R

When new node is inserted

418 l Programming in ANSI C
2. Buila: Ll 4 Sovive £t

The program in Fig. 13.11 can be used to create a sorted list. This 1s possible by creating ‘one item’
list using the create function and then inserting the remaining items one after another using insert
function.

A new program that would build a sorted list from a given list of numbers is shown in Fig. 13.12.
The main function creates a “base node’ using the first number in the list and then calls the function
insert_sort repeatedly to build the entire sorted list. It uses the same sorting algorithm discussed
above but does not use any dummy node. Note that the last item points to NULL.

Program

#include <stdio.h>
#include <stdlib.h>
#define NULL O

struct Tinked_Tist
{
int number;
struct Tinked Tist *next;
bs
typedef struct linked list node;

main ()
{
int n;
node *head = NULL;
void print(node *p);
node *insert Sort(node *p, int n);

printf("Input the 1ist of numbers.\n");
printf("At end, type -999.\n");
scanf("%d",&n);

while(n != =999)

{
if(head == NULL) /* create 'base' node */
{ .
head = (node *)malloc(sizeof(node}));
head —>number = n;
head—>next = NULL;
}
else /* insert next item */

Dynamic Memory Allocation and Linked Lists I 419

head = insert_sort(head,n);

}

scanf("%d", &n);
1

printf("\n");

print(head);

print("\n");
}

node *insert_sort(node *list, int x)

{
node *pl, *p2, *p;
pl = NULL;
p2 = list; /* p2 points to first node */
for(; p2->number < x ; p2 = p2->next)
{
pl = p2Z;
if(p2->next == NULL)
{
p2 = p2->next; /* p2 set to NULL */
break; /* insert new node at end */
}
}
/* key node found */
p = (node *)malloc(sizeof(node)); /* space for new node */
p—>number = x; /* place value in the new node */
p—>next = p2; /* link new node to key node */
if (pl == NULL)
Tist = p; /* new node becomes the first node */
else
pl->next = p; /* new node inserted after lst node */
return (1ist);
}

void print(node *list)
{
if (list == NULL)
printf("NULL");
else
{
printf("%d-—>",1ist—>number);
print(list—>next);

420| Programming in ANSIC

}

return;

OQutput
Input the list of number.
At end, type -999.
80 70 50 40 60 -999
40— —>50-—>60-->70-—>80 —->NULL
Input the 1ist of number.
At end, type -999.
40 70 50 60 80 -999
40— —>50-—->60-—>70-—>80——>NULL

Fig. 13.12 Creation of sorted list from a given list of numbers

REVIEW QUESTIONS

13.1 State whether the following statements are true or false
(a) Dynamically allocated memory can only be accessed using pointers.
(McmmﬂsmeWmmgﬂwmmmwmbwmmmwbdebmmdmmmMMQ
(c) Only one call to free is necessary to release an entire array allocated with calloc.
(d) Memory should be freed when it is no longer required.
(C)Tomwmfﬂmnﬁsmkmwdaﬂmmwdmmnmyﬁqubeﬁwdbdmeﬂmpnmmmemm
(f) The link field in a linked list always points to successor.
(g)ﬂwﬁmmwpmammmgamﬁewammaHmHmOMMwmnwmmyﬂnmemmnmh
13.2 Fill in the blanks in the following statements
(a) Function __is used to dynamically allocate memory to arrays.
(b) A is an ordered collection of data in which each element contains the
location of the next element.
(c) Data structures which contain a member field that points to the same structure type are
called structures.
(d) A identifies the last logical node in a linked list.
(e) Stacks are referred to as
13.3 What is a linked list? How is it represented?
13.4 What is dynamic memory allocation? How does it help in building complex programs?
13.5 What is the principal difference between the functions malloc and calloc
13.6 Find errors, if any, in the following memory management statements:
a. *ptr = (int *)malloc(m, sizeof(int));
b. table = (float *)calloc(100);
¢. node = free(ptr);
13.7 meaHdeHmscmwdadwmmmdMaﬁnwmm?“Mmamﬂwadwmmg%ofmhgﬁnhﬂ
lists over arrays?
13.8 Describe different types of linked lists.

Dynamic Memory Allocation and Linked Lists |421

13.9 Identify errors, if any, in the following structure definition statements:

struct

{
char name[30]
struct *next;

b

typedef struct node;

13.10 The following code is defined in a header file /ist. h

typedef struct

{
char name[15];
int age;
float weight;
}DATA;
struct Tinked Tist
{
DATA person;
Struct Tinked list *next;
}s

typedef struct linked list NODE;
typedef NODE *NDPTR;

Explain how could we use this header file for writing programs.

PROGRAMMING EXERCISES

13.3

13.4

In Example 13.3. we have used print() in recursive mode. Rewrite this function using iterative
technique in for loop.
Write a menu driven program to create a linked list of a class of students and perform the
tollowing operations:

a. Write out the contents of the list.

b. Edit the details of a specified student.

¢. Count the number of students above a specified age and weight.
Make use of the header file defined in Exercise 13.7.
Write recursive and non-recursive functions for reversing the elements in a linear list. Com-
pare the relative efficiencies of them.
Write an interactive program to create linear linked lists of customer names and their tele-
phone numbers. The program should be menu driven and include features for adding a new
customer and deleting an existing customer.
Modify the above program so that the list is always maintained in the alphabetical order of
customer names.

422|
13.6

13.7

13.8
13.9

13.10

Programming in ANSIC

Develop a program to combine two sorted lists to produce a third sorted lists which contains
one occurrence of each of the elements in the original lists.
Write a program to create a circular linked list so that the input order of data item is main-
tained. Add function to carry out the following operations on circular linked list.

a. Count the number of nodes

b. Write out contents

c. Locate and write the contents of a given node
Write a program to construct an ordered doubly linked list and write out the contents of a
specified node.
Write a function that would traverse a linear singly linked list in reverse and write out the
contents in reverse order.
Given two ordered singly linked lists, write a function that will merge them into a third ordered
list.

